x2-1490x+256=0

Simple and best practice solution for x2-1490x+256=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-1490x+256=0 equation:



x2-1490x+256=0
We add all the numbers together, and all the variables
x^2-1490x+256=0
a = 1; b = -1490; c = +256;
Δ = b2-4ac
Δ = -14902-4·1·256
Δ = 2219076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2219076}=\sqrt{2916*761}=\sqrt{2916}*\sqrt{761}=54\sqrt{761}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1490)-54\sqrt{761}}{2*1}=\frac{1490-54\sqrt{761}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1490)+54\sqrt{761}}{2*1}=\frac{1490+54\sqrt{761}}{2} $

See similar equations:

| 7(5p-8)=189 | | -6(u+1)=42 | | 3(x+8)^3=3 | | -w+26=200 | | 3(3/2-1/2y)-4y=10 | | 3((3)/(2)-(1)/(2)y)-4y=10 | | -x=7x=56 | | 263-v=71 | | 2a+7+a=28 | | 13y+25+8y+5=y | | 5a-14=4a+13 | | ƒ(x)=x3-2x2+3x-1 | | 7+x+5=4x-18 | | .15x=40x+.5 | | -x-2(1-2x)=-5 | | 5(-2x+1)+6x=9 | | 2=w/6-8 | | 2a+3+5a+8=9a-9 | | 3+2(x+4)-5=-6 | | 6x+4.5=9 | | 3a+1+12=4a-14 | | -2(-7x+3)-x=4(x-1)-8 | | -2(4+3x)=34 | | (6x+12)-(3x-12)=0 | | a+7+9a=13a-20 | | 4(y-6)=6y-12 | | 4x-12+2x=2+6x-13 | | 2(3x-1)+5=4x-15 | | 1-8u=-79 | | 0.5x×4.2=5.9 | | -4=-4^2-3x+9 | | -3y-2=-5 |

Equations solver categories