If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-12=36
We move all terms to the left:
x2-12-(36)=0
We add all the numbers together, and all the variables
x^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| x*x+2x=60 | | b+14=16 | | 4x-27=x+2 | | .65x+5.00=0.45x+10.00 | | 0.5(x+350)=337.5 | | a^2+21a-1024=0 | | -7x^2-4x+5=0 | | x+22+45=180 | | 49=7(3x-5) | | 25=5(2x+1) | | 8s-38=180 | | G(6.4)=5x+4 | | -2(4x-22)=-42 | | G(-6)=5x+4 | | Y=3x(4/9) | | 64=5s | | 18a+36=180 | | 15x+9-60=-51 | | 2w-12=4w-6 | | -35+7y=-2 | | 9x+11=5x+4x | | 6x+19=7+8x | | 8n-36=21-7n | | 4+5x=3x+23 | | 4+5x=3x+99 | | 32=x^2-17 | | 36x^2-27x+5=0 | | 5x+35=8+8x | | 29-4x=7+7x | | 9x+7=143-8x | | 3r-4.5=7.5 | | 6+8x=102-4x |