If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-100x-140=0
We add all the numbers together, and all the variables
x^2-100x-140=0
a = 1; b = -100; c = -140;
Δ = b2-4ac
Δ = -1002-4·1·(-140)
Δ = 10560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10560}=\sqrt{64*165}=\sqrt{64}*\sqrt{165}=8\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-8\sqrt{165}}{2*1}=\frac{100-8\sqrt{165}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+8\sqrt{165}}{2*1}=\frac{100+8\sqrt{165}}{2} $
| 3=8(x+2) | | 12x=-125 | | 9=-1r | | x+158=x+74 | | 4x-10/x=3 | | 5x-5=16x-60 | | 15=3x+2x+20 | | 1.4(x-2)-x-1=6 | | (4x)+(8)=(2x)-(14) | | (4x)+(8)=(2x)-14 | | (3x)-(8)=(2x)+(9) | | x=-2=9 | | 160=13x | | -22=8x | | 77=11t2 | | x^-5x+18=0 | | 12c+36=110 | | 10d^2+15d-25=6d^2 | | 13x^2-9x-130=0 | | 54=9(v+2) | | 35=2q+-49 | | 5(k+5)=60 | | -p+-73=4 | | 7(v+12)=98 | | 4(v-71)=52 | | 10r+-4=-24 | | 36=3k+9 | | 3x+7=3.5-8 | | 9=1/3f | | (19^x+1)+(7^2x)=350 | | 1-3(4-2x)-3+x=0 | | -4+5w=1 |