If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+x2=48
We move all terms to the left:
x2+x2-(48)=0
We add all the numbers together, and all the variables
2x^2-48=0
a = 2; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·2·(-48)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*2}=\frac{0-8\sqrt{6}}{4} =-\frac{8\sqrt{6}}{4} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*2}=\frac{0+8\sqrt{6}}{4} =\frac{8\sqrt{6}}{4} =2\sqrt{6} $
| 10x+5+8x-1=14x+16 | | c+11=98 | | 102=6+y+13+31+17 | | 2x2=32 | | 8+23+x=42+18. | | T=8n+1 | | 33+y+21=105+17+91 | | 102=6+y+13+31+17. | | 4r+8=2r | | x/0.85=575 | | c+11=98. | | x/1.15=575 | | 5+257=y | | -8-2r=2r | | 3+8+7+s=72. | | xx1.15=575 | | 15+y=23. | | y=43+9 | | 5(x+4)+36=84+3x | | n+1,065=2,741 | | 878=y+99 | | x2+-2x=-8 | | x2+-2x=-20 | | y+166=405 | | -3=-1/8n | | 943=206+b | | 77+w=174 | | 309=s+98 | | k+17=91 | | 231=f+105 | | h+22=75 | | x+9/48=1 |