x2+x2+x2=143

Simple and best practice solution for x2+x2+x2=143 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+x2+x2=143 equation:



x2+x2+x2=143
We move all terms to the left:
x2+x2+x2-(143)=0
We add all the numbers together, and all the variables
3x^2-143=0
a = 3; b = 0; c = -143;
Δ = b2-4ac
Δ = 02-4·3·(-143)
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{429}}{2*3}=\frac{0-2\sqrt{429}}{6} =-\frac{2\sqrt{429}}{6} =-\frac{\sqrt{429}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{429}}{2*3}=\frac{0+2\sqrt{429}}{6} =\frac{2\sqrt{429}}{6} =\frac{\sqrt{429}}{3} $

See similar equations:

| (x-32)^2=x^2+24 | | 3x=+33 | | 2(x=5)/4=5x-2 | | (13x-15)-(9+6x=-3x | | 7x−28=0 | | 5x-6+2x+4=0 | | 7(x+8)+2=11x-4(x-4) | | 1/2c-2/3c=4 | | 6x+(7x-11)=15-(4x+5) | | 3/5y+5=11+1/5y | | 6·(2x/8)=11.5 | | 8+2(4x-6)=6-5(2x+1 | | 6(3y-4)+7=-5(-4+8y)-3(2y-9) | | 4(x+7)=9x+9-5x+19 | | -35-16x=-19x+7 | | -6/7(21x-28)=40-2x | | 3x+x+15+2x=1/5(5x-100) | | 5x-3(4x-2)=-8 | | 2(3x+8)=10x+28-2x | | 7(h+3=6(h-3) | | 2(3x=8)=10x+28-2x | | 20+8r=5(4r+7) | | x/2+8=-4 | | -28t-50=72t+25 | | 8(w+8)-4w=36 | | (1/2)y-2=(1/3)y | | 24=5+8(a-6) | | 15p-25=-25+15p | | -32=3(5b+2) | | 6h+23=74+6h | | -8(9z-4)=-31 | | -13=-27x |

Equations solver categories