If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+8x-768=0
We add all the numbers together, and all the variables
x^2+8x-768=0
a = 1; b = 8; c = -768;
Δ = b2-4ac
Δ = 82-4·1·(-768)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-56}{2*1}=\frac{-64}{2} =-32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+56}{2*1}=\frac{48}{2} =24 $
| C(0.5)r=6 | | x-4(x+26)=-13 | | x-4(x+26)=-13 | | 3x×15=31 | | 3x×15=31 | | x+9(-4-13)=26 | | x+9(-4-13)=26 | | 13=5+2u | | 3x-1.5=1.0.5 | | 1(9y+26)-4y=-13 | | 1(9y+26)-4y=-13 | | x-4(x-11)=29 | | x-4(-x+11)=29 | | x-4(x+11)=29 | | 8x-7(-x-12)=-21 | | 3c+6=-2 | | 3c+6=-2 | | 3c+6=-2 | | x-3.5=8.79 | | 3c+6=-2 | | 3c+6=-2 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | x-3.5=8.79 | | 3(f-5)=7 | | 3(f-5)=7 | | 13x2-41x-120=0 |