If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x-53=0
We add all the numbers together, and all the variables
x^2+6x-53=0
a = 1; b = 6; c = -53;
Δ = b2-4ac
Δ = 62-4·1·(-53)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{62}}{2*1}=\frac{-6-2\sqrt{62}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{62}}{2*1}=\frac{-6+2\sqrt{62}}{2} $
| a/6=6/9 | | x-4/5=5/12 | | 7x/8=3x/4+5/4 | | 3(a-5)=2(a-7) | | 11y-7.9+25y+19.6-47y+6.6=1-11y | | 9x84=90 | | 7x+0.2-x-4.8+3x-1,5+5=0.1 | | 8(x-4)+7=6x+11 | | 4y+8=-7 | | 5(x-4)+6=22 | | 6n+9=-9 | | -5t-8=-9 | | 12+44/x=88 | | 3d²+2d=5 | | -4y-7=6 | | -9z-8=-2 | | -8z+3=-3 | | -7y+4=-4 | | 18/8=28/n | | 3k²+8k-1=0 | | -6y+9=8 | | -6y+5=3 | | 0.45x+0.9=0.35 | | 972-3x^2=0 | | 10y^2+60y+50=0 | | 4(p-2)=2 | | 4.8x+52=3.2x=20 | | (2x+8)=314 | | 100a=175 | | 2x-17=13+5x | | (7x+59)=154 | | (5x+16)=294 |