If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+6x-1=0
We add all the numbers together, and all the variables
x^2+6x-1=0
a = 1; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{10}}{2*1}=\frac{-6-2\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{10}}{2*1}=\frac{-6+2\sqrt{10}}{2} $
| x=(x+42)=90 | | x²+8x-2=0 | | 9/2=(x/8)+5 | | 9/2=x/8+5 | | 3-f=6+2f | | (3n+2)=92 | | c/2-6=10 | | 3x-4+4x-12=180 | | n-8n=n-16 | | 3^2x-4x3^x+3=0 | | 5n+19+3n+33=180 | | 5x+8/4x+8=5/6 | | 9x=7/13 | | 15x^2+43x=8 | | 9+6x=-3+8x | | 4x-(5x+2)=12+5(x-1) | | (5x-4)(4x-3)=0 | | z-7+3=9 | | 1,6x+6=0,8 | | -(-x+1)=-3x+8 | | -(-x+1)=-3x=8 | | -3(4x+2)=-9 | | -x+31=-5x+50 | | -x+32=-5x+50 | | 5x-2(3+4x=6x-5 | | -u-2=-10u+8 | | -x-7=-7x-20 | | (2/3x+10)=(x/5+36/5) | | 29-5(x-2)-x=4 | | 16-4x=4-2x+2x | | 2x9-5(x-2)-x=4 | | 41.8+3.8x=26+3x |