If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+5x-80=0
We add all the numbers together, and all the variables
x^2+5x-80=0
a = 1; b = 5; c = -80;
Δ = b2-4ac
Δ = 52-4·1·(-80)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{345}}{2*1}=\frac{-5-\sqrt{345}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{345}}{2*1}=\frac{-5+\sqrt{345}}{2} $
| 3x+5-2-6x= | | 1.2=-0.3t | | x+25-18=-24 | | 2(u+1)=u-7 | | 7/12=-a+4/3 | | 16y=60 | | 3x²-x-6=0 | | -2.7=-0.9x | | 4/49c^2=4 | | 3p-1=36 | | 1/3m+1=5/6 | | 4(-3x+8)=-2(2x-18) | | –9x–15=–4x+10 | | 1/2m+1=5/6 | | 3p×-1=26 | | 1.3x+4.3=10.8 | | 62=19v | | 9c10=9/5 | | y/11+2=-11 | | -7+5x=-4+6x | | 5x+35=8x+17 | | 48x=480000 | | (2x+23)=90 | | 9x-8+5x-10=180 | | 48x=48000 | | 8-(x-5)=32 | | 5x+23=13 | | 48b^2-98+49=0 | | x(0.20)=70 | | (2x+20)+(2x-15)+x=180 | | 15t=(-225) | | 2=x+41° |