If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+5=56
We move all terms to the left:
x2+5-(56)=0
We add all the numbers together, and all the variables
x^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| 7n-4=317 | | -2x^2-16x+3=0 | | 8(x^2-2x+4)=2x(x+1)-8 | | 1/3x+5=x+5 | | 4x+2(-x+3)=14 | | -u/3=47 | | 5x+4+132=180 | | 2/n;n=1/8 | | -6k-1=2+7k | | 6x-1+9x-23=180 | | 3/4(2a − 6) + 1/2 = 2/5(3a + 20) | | 7(8x-9)+4(3x+4)=6(6x-14)-3(25-6x) | | 3x6=6+12 | | 23x+1=23x+12x+3 | | -52-5n=8+8n | | 20/30=12x | | 4.5=y/2 | | 2/5x-59=55 | | 4(q−83)=20 | | 1/3.5=2.3x | | 11.3x+12.8=7.5x35.6 | | t-4.60=43.40 | | -9-6v=2v+14 | | Y=x^2-10x-40 | | 991=891+n | | 3(x-5)+1=2=x | | 107+49+58+x=360 | | 38-6v=V=24 | | 43/5n=115 | | 4x+3.2=15.6 | | 77-n=48 | | 6z+8=3z-32 |