If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x-336=0
We add all the numbers together, and all the variables
x^2+4x-336=0
a = 1; b = 4; c = -336;
Δ = b2-4ac
Δ = 42-4·1·(-336)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{85}}{2*1}=\frac{-4-4\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{85}}{2*1}=\frac{-4+4\sqrt{85}}{2} $
| (-k)^2-4(-k-1)=0 | | x2+x-264=0 | | (7x+29)+(11x-31)=135 | | X+3=10x-20 | | (7x+29)+(11x-31)=125 | | 3/4(4w-8)+7=w | | 6÷20=x÷2 | | 400-0,05x=150 | | 400-0,05x=250 | | 5(x+3)=10-20 | | 5x-11=8x-3 | | 16x+51=90 | | 3÷2(x-4)=1÷4(3x+1) | | (2p-1)÷2+(1÷4)=(p+1)÷6 | | 2p-1/2+1/4=p+1/6 | | 25x+x=79 | | (5x-11)°=(8x-3)° | | (5x-11)=(8x-3) | | 3x-2÷5=7+2x | | 3x-2ส่วน5=7+2x | | 3x-(x-14)=5 | | 3x+8=3+x | | |x+9|=19 | | 0.1x=-18 | | -21x^2+27x+30=0 | | 2x+5=9x+3 | | (2x+1)/8-(x-1)/3=5/24 | | (x+1)(x-3)+〖(x+1)〗^2=2x(x-4) | | (x+1)(x-3)+〖(x+1)〗^2=2x(x-4) | | 7x-2(3x+2)=5x-11 | | 23=5d−21 | | 11x+10=9x+19 |