If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x-10=35
We move all terms to the left:
x2+4x-10-(35)=0
We add all the numbers together, and all the variables
x^2+4x-45=0
a = 1; b = 4; c = -45;
Δ = b2-4ac
Δ = 42-4·1·(-45)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14}{2*1}=\frac{10}{2} =5 $
| 2(-6x-8)+5=-107 | | 75=5(-4v-5) | | 2(x-5)/5-x=6 | | 36x^2+74x+24=0 | | 6x+111/9=9 | | 10y2+()=20y | | 6(6x-6)+15x= | | 7(1+2a)=119 | | 65=-(4k-5)-6k | | x+10/2=-6 | | 8u^2-12u+12=0 | | 2x2+x=−1 | | (X+5)(x-5)=3x-2 | | 11x2-8=-6x-9x2 | | 67=-4x+3(5-3x) | | -2=3-x | | 5=-3n+8n | | X+(2x-9)=180 | | -3x+15x+7=8x= | | X+(2x-9=180 | | x2+4x=17 | | -2x-6=2x=6 | | -3n-16=-10 | | 16=6p+2p | | -5(-4x-3)=95 | | 4x2+4x=−1 | | x=18+1/2 | | 18=1/2+x | | 4(m-5)-2(m+6)=-40 | | 126=-7(5x-2)+7 | | 3x2-2x=-4x-7x2+12 | | 95=2y-5 |