If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x-10=0
We add all the numbers together, and all the variables
x^2+4x-10=0
a = 1; b = 4; c = -10;
Δ = b2-4ac
Δ = 42-4·1·(-10)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*1}=\frac{-4-2\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*1}=\frac{-4+2\sqrt{14}}{2} $
| (-45+x)/7=-5 | | 2(x-1)^2=9=41 | | 4x-18=2x-34 | | -6=k(0+1)(0-3) | | 25x2=144 | | 4x2-17x+4=0 | | 4x-18=2x-+34 | | 100-5(4+8)=x | | 1/2a=5/12 | | 4x18=2x-34 | | 8=1*y | | 2x2=-128 | | -(x+30)=x | | 7(4x-8)=-26+6x | | (x–π)+2=1 | | -(5x)(x)+9+7x=0 | | 20=y*5 | | 3/2x-14=x-13 | | -1+(-30)=x | | 40=8*y | | -(1+5)=x | | 9^2x-8=1 | | 4x-18=4x+4 | | -1(1+5)=x | | 7=1*y | | 2r=14=24 | | n+5(n-1)=35 | | 3(x+2)=1+2x+5 | | 9/1=-3/4y | | (4x+1)/3=17 | | (180-(8+6x))+(4x+32)=180 | | w+6=2(w-6)-18 |