If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x+6x+24=0
We add all the numbers together, and all the variables
x^2+10x+24=0
a = 1; b = 10; c = +24;
Δ = b2-4ac
Δ = 102-4·1·24
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2}{2*1}=\frac{-8}{2} =-4 $
| (1+0.09)^n=2 | | (s+28)+(3s-13)=5s | | (4x+1)X(5x+1)=357 | | (4s+13)+6s=(14s-39) | | (s+26)+49=(4s-3) | | (-15)+(+16)-(-14)-(+15)=x | | 100(x-1)=500 | | (4x+1)X(5x+)=357 | | (s+50)-(s-4)=s | | f(1.5)=0 | | (s+49)-(s-49)=s | | 4x^2+17x+17=1 | | (s+46)+(s-49)=s | | N-7=a | | (s+27)+43=(6s+25) | | f(1.5)=-4.9(1.5)^2+4(1.5)+10 | | (t-50)+(t-20)=(t+40) | | 4x^2+7x-3=4x | | (s+45)+32=(50s+28) | | (z-49)+(z+20)=(z+50) | | (3s-41)+(s+5)=(s+48) | | (a+38)-(a+2)=(a-2) | | (a+38)+(a+2)=(a-2) | | (a+38)+(a+2)=a-2 | | (y-35)+(y-30)=y | | 7.50/x=300 | | (8s+30)+(21s+29)=(44s+44) | | 3^12-3x=9^-3 | | 2x-10x=120 | | (t-22)-(t+36)=t | | (t-22)+(t+36)=t | | 2h/5+5=3(7) |