If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x+4=13
We move all terms to the left:
x2+4x+4-(13)=0
We add all the numbers together, and all the variables
x^2+4x-9=0
a = 1; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·1·(-9)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*1}=\frac{-4-2\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*1}=\frac{-4+2\sqrt{13}}{2} $
| X-2/2x=6/3x+5 | | 3x+2=3(x+4)-10 | | 5x+25=3x+19 | | -10=w-19 | | 6x*8=3x+4 | | 1/2/x=1/8x | | 20-10x+8x=-1.5x-45 | | 175=2.4x+61.4 | | 3m-4=-6 | | 1x+8=7x+2 | | Y-7=2(x-3) | | 7x-10+28=0 | | 0.5/x=1/8x | | 3x-12x+24=14 | | 28=29v | | -8+2n=26 | | d/20+780+d/12=960 | | -1x/3+8=14 | | 2x-1/6=x+2/4 | | 8x^2+28x-150=0 | | 1=1•4(2x+8) | | 8b-10=-26 | | -k+10=27 | | -6a+10=112 | | -4(7n+1)+5(n-7)=53 | | 5x+7=260 | | 75+x+122=180 | | 21d=0.d | | -9-15y=18y+9(-6y+20) | | 3-8r=3 | | (x−3)−2=6−2(x+1) | | 10p-20+2p=-2(-p-3)+8p |