If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4x+1=0.
We add all the numbers together, and all the variables
x^2+4x+1=0
a = 1; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3}}{2*1}=\frac{-4-2\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3}}{2*1}=\frac{-4+2\sqrt{3}}{2} $
| 1+5v+v=9 | | m+3+2=20 | | 3x-1(2x-7)=15 | | 6x-6-8=4+2x | | -4(2n-6)=-9 | | 2x+3x+10=50 | | x2−4x−55=−2 | | 3a-6-1a-6=4a-4 | | x=+2+3x+5 | | 1÷2x+3=1 | | 7(5f-2)=6(6f-1) | | -3+n=6+22 | | 2x²+23x+63=0 | | y´´+64y=0 | | 5(4-8x)=13 | | 9=-3/7v | | -12+8x-40=-4+15x-6 | | 34=-2d+6 | | x=19+x-19 | | .4x+2=3x | | 12n+30=7n-5 | | 20=-3v-7v | | -5p+34=3p+18 | | 7-x=20x | | 7=7+14v | | 2(x+5)-6=4x-2(-2+x) | | -15+8-20y=-7y+28+4 | | 2(x-3)÷5-3=9 | | 4x-15=3x-7+2x | | 5/6+m=35 | | 5/6+35=m | | 118=-x+7(-6+3x) |