If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+4=+20
We move all terms to the left:
x2+4-(+20)=0
We add all the numbers together, and all the variables
x2+4-20=0
We add all the numbers together, and all the variables
x^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| -1.25x=11.5 | | 9x+2(2x+3)=9x+4 | | 8(u+3)=34-26 | | 65-5x=180 | | 9x+2(2x+3)=9x+8 | | -77=8-5w | | 5e-7=5-6e | | 50x+200=25x+300 | | 2a-9=2a-5 | | 9x+2(2x+3)=9x+6 | | 8.4=4n-5 | | -4y-4=5 | | 12/20=x/15 | | 30+6x=210 | | 6y-30=-9(y-5) | | 30+6x=540 | | 13+n*3=7*n-9 | | 9x+2(2x+3)=4x+11 | | x-31/2=3/4 | | 3x(9x5)=(3x9)x | | 7776^x+1=216^x-5 | | -5=4+v/3 | | -1/4x=1/10 | | 2(w-9)=8w-36 | | -9x=-8-7 | | 9x+2(2x+3)=-+4 | | 1.4+30h=436.60 | | 40+14j=2(-4j-12) | | 64^5=1024^x-5 | | 9x+2(2x+3)=-1+10 | | 2n+(2)+16=4 | | 205+15x=925 |