If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+3x-10=8
We move all terms to the left:
x2+3x-10-(8)=0
We add all the numbers together, and all the variables
x^2+3x-18=0
a = 1; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*1}=\frac{-12}{2} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*1}=\frac{6}{2} =3 $
| -3w+2.7=7.8 | | 6x-1=7x-9 | | 36=6(x-5 | | -x+73=250 | | 217=-u+266 | | (x-5)=0,75x | | -7(t-7=-14 | | Y=9x2-6x+3 | | 3(4a-10)+5(2a-12)=-2 | | 43-u=255 | | 3k+5(4-4k)=-8+k | | 3x-7+9-2x=x=2 | | –17=12z–7 | | 2x-5=x^2-x-3 | | 28+6u=13u | | 132=4x+4(4x-2) | | 72-y=7y | | -2/3y+3/7=1/2 | | 6(g-7)=-90 | | 35=-7(z*8) | | (x+4)+(x+4)+(2x-1)+(2x-1)=360 | | -3w=5.1 | | 0.3b=0.90 | | 4f-16=4 | | 0=x2+8x+64 | | Y+2y+6+2y=5y-6+12 | | 9b-9=18 | | 4w+-5(9w+2)=-386+6w | | 6x+2=-6+3x+20 | | x/7+9.1=-8.4 | | X/9=5/x-2 | | 6x+2-2x=14+5x |