If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+39=180
We move all terms to the left:
x2+39-(180)=0
We add all the numbers together, and all the variables
x^2-141=0
a = 1; b = 0; c = -141;
Δ = b2-4ac
Δ = 02-4·1·(-141)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{141}}{2*1}=\frac{0-2\sqrt{141}}{2} =-\frac{2\sqrt{141}}{2} =-\sqrt{141} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{141}}{2*1}=\frac{0+2\sqrt{141}}{2} =\frac{2\sqrt{141}}{2} =\sqrt{141} $
| +4-5x=29 | | m-18=26 | | (-5/9)m=25 | | 8x-5=6x+27 | | V-8+2(4v+7)=-3(v+3) | | 3y-120= | | 0.3+0.31x-6=6.04 | | 4xx2x=90 | | 11/2=3/4h | | b-6=(-15) | | 7x-9+2x=-90 | | 38=y-42 | | 6(3x+6)=-24 | | -12=4(2x+5) | | 13q+–15q−–q=–14 | | 16x+38=22x÷17 | | 95=x-12 | | -2+5x+4x=16 | | 4x-2.6=9.4 | | v-6.5=13.2 | | 7u-41=-8(u-8) | | w+38=57 | | 5((2x+7)+4(7x-2)=65 | | 3(x+3)-4=-28 | | -x/1.4=4.22 | | 17y+5+13(11)-19=180 | | x−5=−4x+10 | | -4148-14.7x+26.9x=0 | | |2t+2|=10 | | -2(-2-3x)=5x+2 | | 9x+10=10x+6 | | 5x+33=4(2x+5)-5 |