If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+36x=180
We move all terms to the left:
x2+36x-(180)=0
We add all the numbers together, and all the variables
x^2+36x-180=0
a = 1; b = 36; c = -180;
Δ = b2-4ac
Δ = 362-4·1·(-180)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{14}}{2*1}=\frac{-36-12\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{14}}{2*1}=\frac{-36+12\sqrt{14}}{2} $
| (x-1)/2-(2x-5)/3=x | | (3x+6)²=0 | | 2(x+2)-2x=4 | | x+(x*5/100)=65000 | | 4x=2(2x+1) | | -5x-1=x-4 | | 4K-3k-1=19 | | -2(k-13)=2 | | 4(s-12)=16 | | -7u-20=-6u | | -9g=-8g-9 | | -9g=-8g=9 | | 17a+-19a=14 | | 1=12-u | | 13t-6t=14 | | -16h+19h=3 | | 19-p=7 | | 13s=12s-10 | | 0.9x=1600+x-x | | 0.9x=1600 | | 0.9x=1600+x | | 0.6x=-800+x | | 9-1.2x=17 | | 45=(2x)^2/(0.03-x)(0.03-x) | | n^2-15n+180=0 | | +6)=2x−56 | | (t-9)+(t+11)= | | 18/3x=-22/5x | | 0.66x-21=0.75x | | 1/3(3x-1)+2/5(4x+3)=3/5(x-7)+1 | | 0.33x-21=0.25x | | x(x+4)=144-4 |