If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+36x-120=0
We add all the numbers together, and all the variables
x^2+36x-120=0
a = 1; b = 36; c = -120;
Δ = b2-4ac
Δ = 362-4·1·(-120)
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{111}}{2*1}=\frac{-36-4\sqrt{111}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{111}}{2*1}=\frac{-36+4\sqrt{111}}{2} $
| x+(-4)=-10 | | 10=4(z+2)-10 | | 2x+6x=4= | | -1/5r-3=-15 | | 20+(,4x-6=6x | | 10x^2=500 | | 15t^2-14=29t | | 44=-5m-1 | | -(7-4x)=33 | | 8x=6(3x-1)-14 | | 2x^2-51x+72=0 | | 2x+37=5-5x | | 4=6n=43 | | -18=-2+4x | | (7x+3)°=(8x+1)° | | 1-u=293 | | 3m*4=31 | | 3^(5x-4)+3^(5x)=82 | | 20−3r=5 | | 3x-50=+32 | | 24a-12=6a+9 | | -269=2x+5(5+8x) | | -6v+4(v-3)=-24 | | 3•4x=2x+7 | | 3x+4=424 | | 5w^2-55w-30=0 | | 3x-5(x-5)=-5+4x-4 | | 4=3v−5 | | -38-8b=6(1-5b) | | 3x-39+2x+10=180 | | x^-2=16/9 | | 15+2x=5+3 |