If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+32x-200=0
We add all the numbers together, and all the variables
x^2+32x-200=0
a = 1; b = 32; c = -200;
Δ = b2-4ac
Δ = 322-4·1·(-200)
Δ = 1824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1824}=\sqrt{16*114}=\sqrt{16}*\sqrt{114}=4\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{114}}{2*1}=\frac{-32-4\sqrt{114}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{114}}{2*1}=\frac{-32+4\sqrt{114}}{2} $
| 10x(6x)=144 | | 7^x+343/7^x=56 | | x=200000+0.20x | | 4x=1.5x+3 | | x+33+111+5+6=180 | | |-12x+29|=-7 | | 2x3+-10x2=0 | | x+28+76+7+13=180 | | x-0.20x=200,000 | | 5p-3=3-5 | | x+12+4+94+42=180 | | x+46+12+9+65=180 | | 2x=3x+1/5 | | 10x=3x+1/5 | | 15+9x=x | | 2.t–(2t+5)–(1-2t)=(3+4t)–2(t-4) | | x+38+115+14+1=180 | | 3y+3=9y= | | X^2+55x-286=0 | | x+64+3+2+36=180 | | 0.6+15b+4=25.6` | | x+3+12+130+26=180 | | 6(x−9)=−216 | | 9-6/x^2=0 | | x^2=6/9 | | 5x-9=-3+19 | | -y+157=38 | | (x-1)=4x-4-3x | | y+90+-1y=180 | | -3+5+5x-1=1 | | 30+119+5x+6=180 | | 14=190-u |