x2+2x=51250

Simple and best practice solution for x2+2x=51250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+2x=51250 equation:



x2+2x=51250
We move all terms to the left:
x2+2x-(51250)=0
We add all the numbers together, and all the variables
x^2+2x-51250=0
a = 1; b = 2; c = -51250;
Δ = b2-4ac
Δ = 22-4·1·(-51250)
Δ = 205004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{205004}=\sqrt{4*51251}=\sqrt{4}*\sqrt{51251}=2\sqrt{51251}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51251}}{2*1}=\frac{-2-2\sqrt{51251}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51251}}{2*1}=\frac{-2+2\sqrt{51251}}{2} $

See similar equations:

| 7/10=(x-4)/15 | | -9x+1=-×+17 | | 12+n=2n+3 | | 5(p+20)=2(p+30) | | N+12=2n+3 | | 1/5/5/8=2/3/n | | (w+8)(w-5)=14 | | -5y+23=-3(y-1) | | 2(y+2)=-8y+14 | | 7x+15=4x+56 | | 2(y+)=-8y+14 | | 2X-18=4(x-4) | | (3x)14=21 | | -3(w+3)-w-4=-4w-20+7 | | 21+4y=0 | | x+10+x-10+138+x+42=540 | | 80=80+3z | | 20+3y=0 | | 3x+1X=2X | | x^2-6x+4=-7x+6 | | (6x^2-5)x(6x^2-5)=0 | | 7(k+7)=2(11+k) | | 6x+9=2/12 | | (a+2/2)+6=3/2 | | 5x+6x=4x | | 5(3x-12)=3x+60 | | -8x-15=11 | | -6x-4=-3x+2 | | 4x-14=-8+24 | | -8(y-9)=40 | | 92x=15 | | X-3/x+1=x-2/x+6 |

Equations solver categories