If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+2x-41=0
We add all the numbers together, and all the variables
x^2+2x-41=0
a = 1; b = 2; c = -41;
Δ = b2-4ac
Δ = 22-4·1·(-41)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{42}}{2*1}=\frac{-2-2\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{42}}{2*1}=\frac{-2+2\sqrt{42}}{2} $
| (x-1)/2=3x | | 2(x-1)-3(x+2)=4(x-1) | | 7x+5x/6=x+2 | | -39=13t | | 3r2-16-7=5 | | 3+5+x+5=90 | | e-3=7 | | x/7+x/4=11 | | |8x-9|=|9x-2| | | x+1/7+1/4=7 | | 5x-6-7=x7-8 | | 3y/5-1=y/3+3/5 | | x/6-1=x/5x^2-x= | | x/2-x/4+5=x-5 | | x/2-x/4+5=x+5 | | 3p-7=3/5+2p-6 | | 20x=7x11 | | 3t+t^2-20=0 | | √3t+t^2-20=0 | | (8+32y)-12y=28 | | 3x/12=4/6 | | 17=y+(10y-5) | | w-8.8=7.23 | | 8(2d+3)=12(d+3) | | 2x+4=10x-4 | | 8x/7-1=31 | | 5x+22+3x+41+2x+9+1x+10+4x+20+1x+18=360 | | |4x-2|+4=10 | | y2-6y+4=0 | | 5b/2=25 | | 4x+2x+25+5x-10=180 | | a/5=6×3 |