If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+28x=198
We move all terms to the left:
x2+28x-(198)=0
We add all the numbers together, and all the variables
x^2+28x-198=0
a = 1; b = 28; c = -198;
Δ = b2-4ac
Δ = 282-4·1·(-198)
Δ = 1576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1576}=\sqrt{4*394}=\sqrt{4}*\sqrt{394}=2\sqrt{394}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{394}}{2*1}=\frac{-28-2\sqrt{394}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{394}}{2*1}=\frac{-28+2\sqrt{394}}{2} $
| 3c-1=11c= | | 48+4x+2x=180 | | 2(2x-7)=3x-7 | | 55+92=3b | | 6b+4=9b-5 | | 40+2t+2t=180 | | 12-4(2x+9)=-8(x+13) | | 72=6(-e-3) | | -1/6m=-12 | | 12n-2n=20 | | 0.5(7x-14)=0.3(5-10x) | | 12x-1=9x-2 | | 5x+(x-3)=42 | | −2x=85 | | 1/11x+8=6 | | 60+10c+5c=180 | | 13u-12u=9 | | 5x-15=x+11+2x | | 6.35=r2 | | 7=72;x=3 | | 6.35=r | | 31/4-31/9=x | | 45.88+k=61.77 | | 21+3(b+5)=48 | | w/20=126 | | 51+30+u=180 | | x/3+3=21 | | 4(f−58)=96 | | 11x2+60x2=x2 | | 10x+2x+7-3x=43 | | x6=1 | | x(3x+6)=272 |