If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+26x+133=0
We add all the numbers together, and all the variables
x^2+26x+133=0
a = 1; b = 26; c = +133;
Δ = b2-4ac
Δ = 262-4·1·133
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-12}{2*1}=\frac{-38}{2} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+12}{2*1}=\frac{-14}{2} =-7 $
| 13x+7=2x^ | | 3q-1=13-q | | 9x+5=2x^ | | (3x-7)^2-4*(x+1)^2=0 | | 3h^-2h=16 | | 3d^+11d+6=0 | | 3g^-7g=20 | | 2f^-11f=6 | | 6x+32=P | | 10p^+21p+9=0 | | 4q^+7=11q | | 3y+10=7-2y | | 20+5x2=x | | x*0,14/3=700 | | 2u^2+14=110 | | 4x4+2=6x6+2 | | -x3=15 | | 5(2x-6)-7x(2x-6)=(2x-6)(5-7x) | | 1450x=174 | | 4z/10+6=-3 | | 2x+70=5x+10 | | ,5y-3=2y+12 | | 3(x-2)=2x-10 | | 9x+4=11x-10 | | (4,35+5,65)*x=5 | | 5(x+3)-1=3-(2x-6) | | 10+5x4=A | | 10+5(4)=a | | 3x-15=2×-20 | | 10+5(3)=a | | 3+6p=15 | | 6x−11=49 |