If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+24x+135x=0
We add all the numbers together, and all the variables
x^2+159x=0
a = 1; b = 159; c = 0;
Δ = b2-4ac
Δ = 1592-4·1·0
Δ = 25281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25281}=159$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(159)-159}{2*1}=\frac{-318}{2} =-159 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(159)+159}{2*1}=\frac{0}{2} =0 $
| x2+24x+135x+24=0 | | 8x+7=4x+21 | | 15a-49=8a | | 70+59=(-x-21) | | x=1500*(1-0.05)^70 | | 7a+4=4a+5 | | 5c+4=4c+15 | | 1.5+0.6(w=0.4) | | 4x+4=156 | | 2(3x+5)=(6x+10) | | 6+v=30 | | (4y+3)=5y-21=180 | | Y=-0.8x+3.5 | | g(-5)=-7(-5)+4 | | 75-2y=y+25 | | 10y+3=4y+9 | | 2(n+6)=3n | | 4=21x-9 | | 9w=36-3w | | -y+3y=28 | | 4n9=12 | | F(x)=36/x | | 0.2-x=0.5*x | | 4/6=f | | -5/7=x | | 7*x=-5 | | -c/5=2 | | 8x-1+8x-1=110 | | 25x+7x-3=125 | | 2d-5=10-3d | | 7x-3+25=125 | | 1.7=0.45/x |