If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+24x+119=0.
We add all the numbers together, and all the variables
x^2+24x+119=0
a = 1; b = 24; c = +119;
Δ = b2-4ac
Δ = 242-4·1·119
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-10}{2*1}=\frac{-34}{2} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+10}{2*1}=\frac{-14}{2} =-7 $
| F(x)=x³-12x | | 39+17x=90 | | 9-x/2=-18 | | 4x+3=+18 | | 4/5d=40 | | -5x–4=16 | | 3z+6=-8 | | 1+7x=-35x+x | | 18k+40=16 | | -48x+18=144 | | 2x-x=14-7 | | -6(8x-3)=144 | | 4x-46=2x-14 | | 7/10=10/x | | 3(x-1)-2(x+5)=7 | | -7x=-6x | | 1/2x+2=5x | | x+16÷4=54 | | 7x÷4=32+10 | | 2/3x+x=12,5 | | 3x-13=2x+36 | | 13x+4=2x+37 | | 16=-4u+7(u+4) | | 18x=20x-18 | | 12=2(x-8)+2x | | 3x+22=16x-43 | | x^3+8x^2+20x+16=0. | | 7v+2(v+5)=1 | | -34=3(w-4)+8w | | 2x-30=x+19 | | x+6=3x-64 | | 150=15x+15 |