If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+1=13
We move all terms to the left:
x2+1-(13)=0
We add all the numbers together, and all the variables
x^2-12=0
a = 1; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·1·(-12)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*1}=\frac{0-4\sqrt{3}}{2} =-\frac{4\sqrt{3}}{2} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*1}=\frac{0+4\sqrt{3}}{2} =\frac{4\sqrt{3}}{2} =2\sqrt{3} $
| (5x+2)+52=180 | | 45x+5x-41x=36 | | 10d+12=-6d-12 | | 3=5^1.5d | | -2p+41p=39 | | 2n+12n-13n+9n=50 | | n=5+3n | | x/2+x/3=x-8 | | (X+14)+(2x+1)=90 | | 4n-12=-5+-15 | | 9z+6z+(-4z)-(-13z)-(-19)=-5 | | -2x-(-7x)=-20 | | x+16=782 | | 4n-12=-5=15 | | 7=6+z | | (7/(3c))=3/2 | | 8a+4a-9a-3a+3a+2=20 | | 3^3=3^4x+2 | | -2x-7x=-20 | | 9-14=3a=16 | | 3(4x-12)=-72 | | 15u-15u+5u-2u=3 | | 2b+b=100 | | (2x+12)+120=180 | | 2w+7w=40 | | x(x-4)=90 | | -3v+(-9v)+4v-11v-(-20v)-1=1 | | h-10-10=10-9h | | w/7-5=11 | | 2w=7w=40 | | P=6k | | 8=2^5x+7 |