If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+19x-780=0
We add all the numbers together, and all the variables
x^2+19x-780=0
a = 1; b = 19; c = -780;
Δ = b2-4ac
Δ = 192-4·1·(-780)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-59}{2*1}=\frac{-78}{2} =-39 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+59}{2*1}=\frac{40}{2} =20 $
| K-x^2+6x+1=0 | | 2q-4=q+10 | | 2,000(x−0.03)=6,000 | | 4x+9(x+1)+2=11-6x | | X+10=-7x+10 | | 12•(3x+1)=336 | | 0.85xC=55.25 | | -3+5u=6u−9 | | 13/7x=-1 | | 7y^2+10y+3=0 | | 7x-(2x+7)=6x-35 | | -6.9=u/3-2.1 | | 40=1/241+x | | 5(x−9)=−15 | | 25x^2+8=90x | | 20x-4=20x-4 | | 3^x+3^x-1+3^x-2=13 | | 19r-100=-45r-108 | | 7=v/8.6 | | 2.4x+9.6=22.2 | | -8b+5=-9−10b | | -0.8x=21 | | 124/x=x+27 | | y^2+5y+70=0 | | x^2-250x-4900=0 | | 52=-16x | | 1-5y=3-6y | | 8.1x=153.9 | | -(5/13)x=35 | | −4/1a−4=7/4a−3 | | 5.8-1.2x+9=7.5+2.6 | | 12-6x=-2 |