If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+19x-42=0
We add all the numbers together, and all the variables
x^2+19x-42=0
a = 1; b = 19; c = -42;
Δ = b2-4ac
Δ = 192-4·1·(-42)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-23}{2*1}=\frac{-42}{2} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+23}{2*1}=\frac{4}{2} =2 $
| 11a-9a=14 | | -11+n/8=-13 | | 5a-a-2=14 | | 3(2x-5)=6+2(x-3)= | | 6v-2v+4=16 | | -5d-10d=15 | | 39+3y+y+8=180 | | 20x=1,600 | | A=7/4(h-16) | | x=150(0.85)^3 | | 19-r=10 | | 5(-10-7x)=-295 | | Y=5x^2-20x+22 | | 78+2p+5+p+20=180 | | 2x+15=3x+x | | 0.429a+19=10 | | -9z-(-5z)=12 | | 5(-10-7x=-295 | | 6n=4n+12 | | 2y+20+y+14+82=180 | | 6p-3p-1=14 | | -34x+23=40 | | 4-(3x-5)=6-(2x+7)= | | 9n-5=-77 | | 2x-20+3x+3x=180 | | 12n^2=-6-9n | | -3x-1=3x+8 | | 2e=-10e-16 | | 47-3x=107 | | 6y-3+2y=8y+7-10 | | -3x-1=3x=8 | | -3x+2+6=6-3x |