If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+18x+45=0
We add all the numbers together, and all the variables
x^2+18x+45=0
a = 1; b = 18; c = +45;
Δ = b2-4ac
Δ = 182-4·1·45
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-12}{2*1}=\frac{-30}{2} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+12}{2*1}=\frac{-6}{2} =-3 $
| .4x-91=2x-41 | | -32h-3=29-h | | X^-3x^-4x=0 | | 4v^2+16v=55 | | 0.33333333333(t+7)=24 | | (6-z)(5z-4)=0 | | 3y-4=4-+3y | | 3x^-17x+10=0 | | r^2=2r-33=0 | | r^2+2-33=0 | | -4(n+9=12-(n-6) | | 120x=600+39x | | 1/4z^2+2=z | | (1)(3)(t+7)=24 | | 101/4z62+2=z | | 5x+20=x+100 | | 10x-7(x+3)=-45 | | 8x-3=6x-17 | | 4x+2-x=6x-4-3x+6 | | 1/3(t+7=24 | | 0.5n(n+1)=6 | | 4(x+4)+3(x+2)=7x+22 | | 6z=42+10 | | 10=d^2-5d | | 9=34(x+8) | | 8x^2+9=4x^2-4x=8 | | 3x-8=16.5 | | 20/3=30k | | 3x÷2+10=22 | | 5w^2+4+w=6 | | x+10+7x/2-5+x/2=180 | | X^2-3=7x |