If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+16x-19=4
We move all terms to the left:
x2+16x-19-(4)=0
We add all the numbers together, and all the variables
x^2+16x-23=0
a = 1; b = 16; c = -23;
Δ = b2-4ac
Δ = 162-4·1·(-23)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{87}}{2*1}=\frac{-16-2\sqrt{87}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{87}}{2*1}=\frac{-16+2\sqrt{87}}{2} $
| 10-5=(x-1) | | 11-c=9 | | –2=h/4+–5 | | −2x2+6x−10=2x+4 | | y=500(1+0.08)^5 | | x/x-17=5 | | C+c-12=2 | | 8(x-1=2(x-2) | | 11-b=11.5 | | 2x+3(-7)=11 | | 8v−4=9v | | -4(-2x+1)=12 | | 55-9x=x-7 | | x2+9x+15=-3 | | –5t=9−8t | | 23=y-47 | | z/11=10 | | x+4=56.24 | | 6x+5+65+122=18x+120 | | 2x+3-7=11 | | x/4=56.24 | | r^2=194 | | 4/9=10/c | | 28+11x=20x+1 | | -43=-12+a | | 4^(x-1)=12 | | x-56.24=224.96 | | 3−8r=9−5r | | (x)=1/2(5)x | | 9+2e=e | | 4x+50=542 | | F(1.5)=3x-4 |