If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+14x+20=0
We add all the numbers together, and all the variables
x^2+14x+20=0
a = 1; b = 14; c = +20;
Δ = b2-4ac
Δ = 142-4·1·20
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{29}}{2*1}=\frac{-14-2\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{29}}{2*1}=\frac{-14+2\sqrt{29}}{2} $
| 150=70•t | | (3z+1)–(z+1=) | | 3-3f=-3 | | 3-6k=75 | | 9(11−k)=3(3k−9) | | 11-5d=1 | | 4-6p=-2 | | 6v=11=59 | | 4-4v=-44 | | 2e-10=0 | | 48/n=-8 | | 2+j=43 | | x/10=270 | | 19x-18=-19=18 | | 7+50f=202 | | 1-(224/n)=0 | | 6+z/3=12 | | 6g+2=20-3g | | 3j-1=7+2j | | 11x=88.44 | | 13+k=7+2k | | 1+3w=5+w | | y-(-18)=25 | | 2z+6=10+z | | x+6=-76 | | 13b-15b-8b=20 | | x+23=13.4 | | .15x5=331/3 | | 4K+-18k=14 | | 16t^2-80-200=0 | | 4.5x+27=-9= | | 11p+-p+12p-10=12 |