If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+12x+36=14
We move all terms to the left:
x2+12x+36-(14)=0
We add all the numbers together, and all the variables
x^2+12x+22=0
a = 1; b = 12; c = +22;
Δ = b2-4ac
Δ = 122-4·1·22
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{14}}{2*1}=\frac{-12-2\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{14}}{2*1}=\frac{-12+2\sqrt{14}}{2} $
| 2x2+6x=-4 | | 5t^2+7t-60=0 | | x-4(x+12)=-6 | | 6-6r-5=-23 | | 3x+14=x-9 | | 9x^2–14x+5=0 | | 3x-1-4=-1 | | 4(x+6)-2(x+2)=-6 | | (23x+1)=52 | | 1-3p-5=-10 | | n/3=0.9 | | 7(x-11)=21 | | 3m+1=2m+4=180 | | 9t^2–14t+5=0 | | A=3(1+4x)+11+2x | | 3x-4-x=-2 | | 3x-4+8x+3=33 | | 9t2–14t+5=0 | | 5(x+12)=2(x-15) | | 3m+1=2m+4 | | 4x-5=9x+3 | | n-2n=-7 | | 2x2-11x+15=0 | | 4(n+8)=44 | | 4-1/3z=-7z+6 | | 5n+9=26 | | 2/z-5=z/0.52+7 | | .2(n−8)=−6 | | 2x3+-11x2+15x+50=0 | | 4a-2=20 | | 4x+1=3-3x | | 5x=-32-2(2x+2) |