If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+10x-100=0
We add all the numbers together, and all the variables
x^2+10x-100=0
a = 1; b = 10; c = -100;
Δ = b2-4ac
Δ = 102-4·1·(-100)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{5}}{2*1}=\frac{-10-10\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{5}}{2*1}=\frac{-10+10\sqrt{5}}{2} $
| 7y-6=4y-12 | | 5(1-2x)+3(x+5)=2(1+x)-9 | | -3(3x-7)=9x+21 | | 1/11x+1=1/4x+4/11 | | (x+8)+(7x-16)+4x=180 | | 3x+5/2=44.5 | | 4=3m-26 | | 24+(2x+18)+(3x+6)=180 | | 0.52(x+2)=5.2 | | (5y+5)+(13y-15)=180 | | 2^2x+2^x+1-8=0 | | 3y=1/81 | | x^2+1.95x+.75=0 | | (12/7)=1.015^x | | 3x²+10x+9= | | 3x²+10x+9=0 | | 0.75a=10 | | 29/3-p/5=112/3 | | 1/x+x+2/3=2 | | 4x+4+7x=53+4x | | 1/k-k/6=2/3 | | v(2v+5)=0 | | (1+1)^2-2t-1=9 | | 42w+77=7 | | 4^x–1=2^x+8. | | 2x+10+5x-14+6x+2=180 | | 5x-10x2=0 | | -1+4n-n=13+n-3+5 | | 4+4a-2-7=-4a-7+6a | | -6(-6n-6)=36+7n | | x^2-1.95x+.75=0 | | 6(x-7)=-39+3x |