x2+(x+7)2=(x+8)2

Simple and best practice solution for x2+(x+7)2=(x+8)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(x+7)2=(x+8)2 equation:



x2+(x+7)2=(x+8)2
We move all terms to the left:
x2+(x+7)2-((x+8)2)=0
We add all the numbers together, and all the variables
x^2+(x+7)2-((x+8)2)=0
We multiply parentheses
x^2+2x-((x+8)2)+14=0
We calculate terms in parentheses: -((x+8)2), so:
(x+8)2
We multiply parentheses
2x+16
Back to the equation:
-(2x+16)
We get rid of parentheses
x^2+2x-2x-16+14=0
We add all the numbers together, and all the variables
x^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $

See similar equations:

| 7(x+5)-3=2x-4 | | 49-u=24 | | 3x+14=7x+-1 | | Y=4-0.8y | | 28+8x=6(x+7) | | 3+9+5=y | | 10.24+6.4x+x^2=0.493(-0.5x)(0.4-0.5x) | | 5s+25=s+57 | | 20x+2=122 | | 13-5k=1-3k | | 39+5=y | | 3.8x-(-1-9.6x)=2.6+13.3x | | 4c-18=3c | | x(x+1)=9312 | | 7(x-4)^2-3(x+5)^2=4(x+1)(x-2)-2 | | z+2/7=2z+1/7 | | 9x-7=3+3x | | 3x-12=3(x+1)+15 | | 1/9(x)=27 | | 9x3=1/2 | | 11x-5+6x+5+x=105 | | 11x-5+x=6x+5 | | 11x-5+6x+5=180 | | 11x-5+6x+5+x=180 | | 11x-5+6x+5=x | | x12=1872 | | F(x)=-7(x+2)(5x-15) | | 17k=60 | | 2(3y-7)=20 | | 0.6x+13-26=0 | | x5=15240 | | 21-5a=-5(a-6)-4 |

Equations solver categories