x2+(x+17)2=252

Simple and best practice solution for x2+(x+17)2=252 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(x+17)2=252 equation:



x2+(x+17)2=252
We move all terms to the left:
x2+(x+17)2-(252)=0
We add all the numbers together, and all the variables
x^2+(x+17)2-252=0
We multiply parentheses
x^2+2x+34-252=0
We add all the numbers together, and all the variables
x^2+2x-218=0
a = 1; b = 2; c = -218;
Δ = b2-4ac
Δ = 22-4·1·(-218)
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{219}}{2*1}=\frac{-2-2\sqrt{219}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{219}}{2*1}=\frac{-2+2\sqrt{219}}{2} $

See similar equations:

| 6k−6=−18 | | .50x+.25(50)=22.5 | | 2n+3(1+n)=-2(4-2n) | | 7x÷10=26x+10 | | 3×1-5y=19 | | 42=u-9 | | (5x+6)^2=5 | | x–10=-32 | | -v-6/5=v3/5-3/2 | | 0.05c=0.08+7.50 | | 27+x=-7 | | -v-6/5=3/5v-3/2 | | 6m/5=- | | 4+3(2x-3)=6x+5 | | 5n+11+3n=6n+8 | | -2=10-5x | | 5x–6=–11. | | 5x^+1=31 | | 2+8(m+4)-3(m+4)=7m-4-6 | | 2/5t+9/10=1/2t-3/4 | | -6-2(-5x-5)=6x+6(x+2) | | -6-2(-5x-5)=6x+6(x=2) | | 16x-8=44 | | (2x+2)+(x+1)=5x-5 | | 2x+2+x+1=5x-5 | | 1.5-0.02x=0.26 | | x/12=-72 | | 2(2x+7)=4x+10 | | -9x=-32 | | 7+6x+125=180 | | 8x-10=12x-15 | | −8(−5b+7)+5b= |

Equations solver categories