x2+(15-x)2=113

Simple and best practice solution for x2+(15-x)2=113 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2+(15-x)2=113 equation:



x2+(15-x)2=113
We move all terms to the left:
x2+(15-x)2-(113)=0
We add all the numbers together, and all the variables
x2+(-1x+15)2-113=0
We add all the numbers together, and all the variables
x^2+(-1x+15)2-113=0
We multiply parentheses
x^2-2x+30-113=0
We add all the numbers together, and all the variables
x^2-2x-83=0
a = 1; b = -2; c = -83;
Δ = b2-4ac
Δ = -22-4·1·(-83)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{21}}{2*1}=\frac{2-4\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{21}}{2*1}=\frac{2+4\sqrt{21}}{2} $

See similar equations:

| 6x=416 | | (5x+9)^2=110 | | 2(44-2y)+y=52 | | 2(a-3)=3(-2a+60 | | 5-5t=17+t | | 8x+-6=-5x+-24 | | 13x+217= | | 17.5+4x=-19.5x+-39 | | 17.5+4x=-19.5x+-38 | | 4=24/r | | 3c-10=-1 | | 5^x=2.236 | | 5x-8=×/3 | | 12x*2=10 | | 45(5687x)=556 | | 2y3-5y2+2y-5=0 | | 100+25x=225 | | 54=9(x | | y2-4y+221=0 | | -6(-2x+3)=24 | | Y/7+y/9=y/9-1/9 | | 6x+10=10×-10 | | -y2-4y=-221 | | -10j=-5j+5 | | 6p+3=-7+7p | | 1+9d=10d+10-2d | | -8-7m=6+7m | | -4u-9=-u-9 | | 9x/2=65 | | -8+4v=2v | | -10z=-6-9z | | -17=9-13p |

Equations solver categories