x/(5x+12)=2x-3

Simple and best practice solution for x/(5x+12)=2x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/(5x+12)=2x-3 equation:



x/(5x+12)=2x-3
We move all terms to the left:
x/(5x+12)-(2x-3)=0
Domain of the equation: (5x+12)!=0
We move all terms containing x to the left, all other terms to the right
5x!=-12
x!=-12/5
x!=-2+2/5
x∈R
We get rid of parentheses
x/(5x+12)-2x+3=0
We multiply all the terms by the denominator
x-2x*(5x+12)+3*(5x+12)=0
We multiply parentheses
-10x^2+x-24x+15x+36=0
We add all the numbers together, and all the variables
-10x^2-8x+36=0
a = -10; b = -8; c = +36;
Δ = b2-4ac
Δ = -82-4·(-10)·36
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{94}}{2*-10}=\frac{8-4\sqrt{94}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{94}}{2*-10}=\frac{8+4\sqrt{94}}{-20} $

See similar equations:

| 2x+70=80x | | -10-5a=6(5a+4) | | 3|x+2|=15 | | -76+9x=3x+20 | | 2(x+6)=-(-x-5) | | 5=a/12+6 | | 17.4p-13.7p-16.91=7.1p+18.11 | | 7/3+x=8/9 | | 40×8.25+12.38x=385.71 | | (-1/1.75)=(-1.25/x) | | 6x+4=-8+4x+16 | | x^2+8x-31=0 | | 35x+98=7x^2 | | 385.71=40×8.25+12.38x | | -6x-101=-14x+131 | | x+3/5-3/5=23/5-3/5 | | 2/3x-4/3=3/16 | | 0=4.9x^2+34.64x | | 6z-7=2z-2@ | | 3x+-50=100 | | 11.2t=-2.9t-19.74 | | a/3-10=3/2 | | 7(1-6b)=-28-7b | | 5r+2=6r | | -32+16=-6x+10x | | b-8+8b=12 | | 3(2x-8)+6(x+1)=2x+8x | | 18-3u=-17+2u | | x+3/5-1/10=43/5-1/10 | | 2=2(p+1)-8 | | 540=300+r300 | | 21=5/6c-4 |

Equations solver categories