If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x.12(x+10)=132
We move all terms to the left:
x.12(x+10)-(132)=0
We multiply parentheses
x^2+10x-132=0
a = 1; b = 10; c = -132;
Δ = b2-4ac
Δ = 102-4·1·(-132)
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{157}}{2*1}=\frac{-10-2\sqrt{157}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{157}}{2*1}=\frac{-10+2\sqrt{157}}{2} $
| 30-4m=6m+0 | | 9(2n-2)=9n+63 | | 8/2x3/2=81 | | 4^x-7=15 | | 10+47.45x=49.45x | | -11-3y=-35 | | 12x+3(x-3)=36 | | 9x-3x=18x | | 5y-6=26-3y | | -7+(-4x)=4x+9 | | −1.5(4−n)=2.8−1.5(4−n)+2.8 | | -16t^2+320=0 | | (-2x-4)/5+8/3=3(x-1) | | x.5x-3=102 | | (600+40)x=2400 | | (-2x-4)/5+8/3=3(x=1) | | 4x+40=28 | | 4(6x-10)=8(-3x+5) | | 74+55=x+62 | | 2400=(600+40)x | | 6d-7d=9 | | 82-0.4x=78. | | -7-(4x)=-4x+9 | | 25x^2-1350=0 | | 24=4•k | | (2x-6)+x=180 | | 640x=2400 | | 7x=-5+36 | | 0=6/5x-0,01/5x^2-0,6x | | 1.5x=39 | | 9y-11=36 | | x/3+29=-14 |