If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-7(-8x)/9x-(3+4x)=2/3
We move all terms to the left:
x-7(-8x)/9x-(3+4x)-(2/3)=0
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
x-7(-8x)/9x-(4x+3)-(+2/3)=0
We get rid of parentheses
x-7(-8x)/9x-4x-3-2/3=0
We calculate fractions
x-4x+168x/27x+(-18x)/27x-3=0
We add all the numbers together, and all the variables
-3x+168x/27x+(-18x)/27x-3=0
We multiply all the terms by the denominator
-3x*27x+168x+(-18x)-3*27x=0
We add all the numbers together, and all the variables
168x-3x*27x+(-18x)-3*27x=0
Wy multiply elements
-81x^2+168x+(-18x)-81x=0
We get rid of parentheses
-81x^2+168x-18x-81x=0
We add all the numbers together, and all the variables
-81x^2+69x=0
a = -81; b = 69; c = 0;
Δ = b2-4ac
Δ = 692-4·(-81)·0
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-69}{2*-81}=\frac{-138}{-162} =23/27 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+69}{2*-81}=\frac{0}{-162} =0 $
| 5x-25=2x-14 | | 20x-40=2x-5 | | 6x^2+24x+27=0 | | 8x+64=2x-4 | | 55x=6x-22 | | a(2a-5)=3 | | 10x/4=10 | | 2a^2-5=3 | | 1/3x+1/3x=12 | | |-5,5x|=4,5x-10 | | (X-3)(x-4)=72 | | 2y-3+3(3y+6)=5 | | 3x+24=3.2 | | (x/3)+(5/2)=-3/2 | | (x/3)+(5/2)=-(3/2) | | 15/4-7y=9 | | 3/2(x+6)=3/2 | | 3/7+y=12/7 | | x/15-2=12 | | 5x+15=2x+57 | | 30+x=60+2x | | 3(3w-6=18 | | -4(1+6x)=92 | | x^2+0.00000003x+0.000000003=0 | | 5(5k-5)=175 | | 5x-7=4+2x | | (7^x)=1475 | | 7^x=1475 | | 5=4x9= | | 3x+5x=x=4 | | (8x+6)∘=188∘ | | 3(2x+7)=2 |