x-3/x-2+1=-x-2/x-4

Simple and best practice solution for x-3/x-2+1=-x-2/x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-3/x-2+1=-x-2/x-4 equation:



x-3/x-2+1=-x-2/x-4
We move all terms to the left:
x-3/x-2+1-(-x-2/x-4)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-4)!=0
x∈R
We add all the numbers together, and all the variables
x-3/x-(-1x-2/x-4)-2+1=0
We add all the numbers together, and all the variables
x-3/x-(-1x-2/x-4)-1=0
We get rid of parentheses
x-3/x+1x+2/x+4-1=0
We multiply all the terms by the denominator
x*x+1x*x+4*x-1*x-3+2=0
We add all the numbers together, and all the variables
3x+x*x+1x*x-1=0
Wy multiply elements
x^2+x^2+3x-1=0
We add all the numbers together, and all the variables
2x^2+3x-1=0
a = 2; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·2·(-1)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{17}}{2*2}=\frac{-3-\sqrt{17}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{17}}{2*2}=\frac{-3+\sqrt{17}}{4} $

See similar equations:

| 7.6+7.9x=5.9 | | 10x+60=1.2-40.8 | | (m+8)=(m-9)=(m+1) | | P(x)=20x^{2}-240x | | 13=z/3+10 | | 3x+10=4x+35 | | 1/5x5/1=6/3(5/1) | | 9x−6=21 | | 3(x+4)=-4(x2) | | 3x^2-6x=144 | | 5x+3.50=27.50 | | 6x+104=10x+60=1.2x-40.8 | | I6x+7I+3=-43 | | 7/9n=8/108 | | 1.5=d | | (x-5)(x-8)=88 | | 9x^2-6x-196=0 | | (3x+1)+75=(x+80) | | x-(x/1.45)=1250 | | 5x*5x-16=4x*4x-6x | | -2x+7=4x-2 | | w/5+9.3=-3.2 | | -1.3+w/6=20.5 | | 3*36-y=5y | | 5x+12=8x+38=360 | | 90-5x=50 | | 75=2/3x | | 1/5x-1/6x=1 | | 12(2k+11)=12(2k+1) | | x+80=(8x+1)+75 | | g=−130+16 | | 0.75x=3000 |

Equations solver categories