x-3/4x-0.18x=313.5

Simple and best practice solution for x-3/4x-0.18x=313.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-3/4x-0.18x=313.5 equation:



x-3/4x-0.18x=313.5
We move all terms to the left:
x-3/4x-0.18x-(313.5)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
0.82x-3/4x-313.5=0
We multiply all the terms by the denominator
(0.82x)*4x-(313.5)*4x-3=0
We add all the numbers together, and all the variables
(+0.82x)*4x-(313.5)*4x-3=0
We multiply parentheses
0x^2-1254x-3=0
We add all the numbers together, and all the variables
x^2-1254x-3=0
a = 1; b = -1254; c = -3;
Δ = b2-4ac
Δ = -12542-4·1·(-3)
Δ = 1572528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1572528}=\sqrt{524176*3}=\sqrt{524176}*\sqrt{3}=724\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1254)-724\sqrt{3}}{2*1}=\frac{1254-724\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1254)+724\sqrt{3}}{2*1}=\frac{1254+724\sqrt{3}}{2} $

See similar equations:

| 4x^-9=55 | | 8y-5=-13 | | 4y-27=20 | | -(n^2)-39n+348=0 | | 3(3x-5)+5(x-3)=6 | | -4y-6=-5 | | 3x-5/5+x-3/3=6 | | 2.6666666667c-2=0.66666667c-12 | | (n^2)+39n-348=0 | | 9x^212x=0 | | 8/z-2=1 | | 20-x^2=x | | 20-x^×=x | | y/10+8=-5 | | x/10+3=-3 | | 2y-6=10y+10 | | y^2+15y=8y | | x/60+2400-x/120=30 | | ?x5=7.5 | | -7y+2=y+18 | | 8z-2=1 | | 3x+8/2x+8=11/8 | | (4n^2)-58n+190=0 | | 10-(x+2)=7x | | 3x²-11x=8 | | -7x+57=12x | | 2x+4x=6x-18 | | 13(x-4)-3(x-9)=5(x+4) | | 13(x-4)-3(x-9)=5(x=4) | | 8x-9=4x-81 | | 8x+18=2x-18 | | (2n^2)-25n-95=0 |

Equations solver categories