If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x-1*2x-2(-1)*3x-x-1(-1)*x+1-x*1*3x=3x(-x)-4*2x
We move all terms to the left:
x-1*2x-2(-1)*3x-x-1(-1)*x+1-x*1*3x-(3x(-x)-4*2x)=0
We add all the numbers together, and all the variables
x-1*2x-2(-1)*3x-x-1(-1)*x-x*1*3x-(3x(-1x)-4*2x)+1=0
We add all the numbers together, and all the variables
-1*2x-2(-1)*3x-1(-1)*x-x*1*3x-(3x(-1x)-4*2x)+1=0
We multiply parentheses
-1*2x+6x+1x-x*1*3x-(3x(-1x)-4*2x)+1=0
Wy multiply elements
-3x^2*3-2x+6x+1x-(3x(-1x)-4*2x)+1=0
We calculate terms in parentheses: -(3x(-1x)-4*2x), so:We add all the numbers together, and all the variables
3x(-1x)-4*2x
We multiply parentheses
-3x^2-4*2x
Wy multiply elements
-3x^2-8x
Back to the equation:
-(-3x^2-8x)
-3x^2*3-(-3x^2-8x)+5x+1=0
Wy multiply elements
-9x^2-(-3x^2-8x)+5x+1=0
We get rid of parentheses
-9x^2+3x^2+8x+5x+1=0
We add all the numbers together, and all the variables
-6x^2+13x+1=0
a = -6; b = 13; c = +1;
Δ = b2-4ac
Δ = 132-4·(-6)·1
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{193}}{2*-6}=\frac{-13-\sqrt{193}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{193}}{2*-6}=\frac{-13+\sqrt{193}}{-12} $
| 6+(x+4)= | | -2d-3=-10-d | | b+5=-15 | | 3.4j-7.99=4.8j+2.37 | | 2x+20=12x-6 | | x-1*2x-2*(-1)*3x-x-1*(-1)*x+1-x*1*3x=3x* | | 2x+6=2+3x-8 | | –9b=8−7b | | 3-3x=2x+17 | | -5(x+3-2x)+3=5x-12 | | 12.4=0.2x | | F(x)12=24 | | 1.7r-7.38+3.96=1.1r-6.54 | | 46y+10=6y | | –7x=6x–13 | | x+2(2x+3)-1=1/4(4x+28) | | 7q+7=28 | | 80+3x=230+2x | | x^2/(x^2+1)=0 | | u+7=95 | | -9-5n=9-3n | | 40.5=9p | | -1=5p+3p-9 | | 9m+63=180 | | -2/3(-x-1/2)=1/6(x-3) | | -20=4d+4 | | 3s-2)=(2s-3) | | C+60=4c | | 6=-4b/7+3 | | 174/x=12/36 | | 31+k+90=90 | | -5m+3=2m+10 |