x-(x+1)(x-3)=4(x-2)

Simple and best practice solution for x-(x+1)(x-3)=4(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x-(x+1)(x-3)=4(x-2) equation:



x-(x+1)(x-3)=4(x-2)
We move all terms to the left:
x-(x+1)(x-3)-(4(x-2))=0
We multiply parentheses ..
-(+x^2-3x+x-3)+x-(4(x-2))=0
We calculate terms in parentheses: -(4(x-2)), so:
4(x-2)
We multiply parentheses
4x-8
Back to the equation:
-(4x-8)
We get rid of parentheses
-x^2+3x-x+x-4x+3+8=0
We add all the numbers together, and all the variables
-1x^2-1x+11=0
a = -1; b = -1; c = +11;
Δ = b2-4ac
Δ = -12-4·(-1)·11
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{5}}{2*-1}=\frac{1-3\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{5}}{2*-1}=\frac{1+3\sqrt{5}}{-2} $

See similar equations:

| 12x-13=0 | | 36+4u=10u | | 34=-7u+4(u+4) | | -7(s-77)=-63 | | 36=4u=10u | | 12x-4=x+5 | | 12+(7y+5)=20 | | 8(w-7)=-3w-23 | | 9-(x÷4)=65 | | 2(–2x–4)+6=5–3(x+1)= | | t^2-34t-4=0 | | 3(j+3)=15 | | 6a-6=4a | | s-14=19 | | -26=3x+9-11x | | 6a–6=4a | | 5=n+n | | 2x–4=-½(-4x+8) | | 2/8(3y+2)=1/4(2y+1/2)+1/2 | | r-4/5=-1/4 | | -4y-4y=3-y-5 | | 5p^2+28p+32=0 | | x(x-3)+7(x-3)=0 | | 13-f=9 | | 2x=2(x2) | | 8a+9=11a | | X+3x-4=7 | | -4x+54=-58-4x | | 5a^2-11a+6=0 | | 90-8.41x=47.95 | | 8=(11-x) | | 3+|-4m+9|=4 |

Equations solver categories