If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x.10(x+5)=40
We move all terms to the left:
x.10(x+5)-(40)=0
We multiply parentheses
x^2+5x-40=0
a = 1; b = 5; c = -40;
Δ = b2-4ac
Δ = 52-4·1·(-40)
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{185}}{2*1}=\frac{-5-\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{185}}{2*1}=\frac{-5+\sqrt{185}}{2} $
| 6x-3(4x-6)=-48 | | 5x+2+5x+2+4x+4x=148 | | 5x-4-3x+5=3 | | 4x+25=x+100 | | (6x-x^2)=(16) | | 3(2x-11)-4x=-29 | | 0,6-(0,5-0,5x)*3-x=0,6 | | 4x+6x=156 | | 3x+3+3x+3+4x-1+4x-1=74 | | 6k-21=57 | | (x/2)-14=20 | | 5^x=0.25 | | 5*(x+3)=-3x+17 | | 18x–12=18x+6 | | 81+67+(5x-8)=180 | | 3Y=20x+40 | | 15y=6y+63 | | 4k+9=32 | | 3(2k-7)=57 | | y=6(3)^2 | | 0,5(1-2x)=2,5-0,6x | | 5(x-2)+3x-4=-8 | | 7h=-7+6h | | 46+105+(2x-13)=180 | | u/–10+–53=–61 | | 32=1/5x+18 | | 54/15x=125/15 | | j/9=11 | | 3.4+x/1.4=2.5 | | 5.2-1.4x=8 | | 0,8(2x-3)=(2x+4)*0,6 | | T(n)=13n+6 |