If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x2+3x-6=31
We move all terms to the left:
x+x2+3x-6-(31)=0
We add all the numbers together, and all the variables
x^2+4x-37=0
a = 1; b = 4; c = -37;
Δ = b2-4ac
Δ = 42-4·1·(-37)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{41}}{2*1}=\frac{-4-2\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{41}}{2*1}=\frac{-4+2\sqrt{41}}{2} $
| x+.5=3x-1.5 | | 3.5k+9-2.5=11 | | -3/4k+5=2k-1/4 | | 2(3-6x)=-90 | | 9(y-93)=45 | | 3/2w+1=+9/2 | | q+-99=-12 | | 5(x-8)=x-8 | | 3s+7=2s | | -5x+3=-5x+2 | | -3n+9/2=27 | | b=b^2+19b-20 | | 4(x−4)=−1/2(24−6x) | | 0.5x-0.25=2x+5 | | 3x-6+10=5x-20+2x | | 12q-6q+3q-2q-7=14 | | -3(5k+8)=9 | | −0.2(14−6x)=−7x−(−3−9x) | | -3+2n=3n | | 25x+10+9x=190 | | 2t^2-9t-60=0 | | 24=6(w-95) | | 18x+21+3x^2=0 | | y4+3=−8 | | 3x+12-6x=9 | | 12m+150=$1138 | | 19-5n=-2(6n+1) | | x+65+150=180 | | 8x-6/2=x/12 | | -3/4h=9/11 | | n-n+n-n+4n+2=10 | | -3x5=-5x2 |