x+x+1/4x+1/4x=180

Simple and best practice solution for x+x+1/4x+1/4x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x+1/4x+1/4x=180 equation:



x+x+1/4x+1/4x=180
We move all terms to the left:
x+x+1/4x+1/4x-(180)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/4x+1/4x-180=0
We multiply all the terms by the denominator
2x*4x-180*4x+1+1=0
We add all the numbers together, and all the variables
2x*4x-180*4x+2=0
Wy multiply elements
8x^2-720x+2=0
a = 8; b = -720; c = +2;
Δ = b2-4ac
Δ = -7202-4·8·2
Δ = 518336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{518336}=\sqrt{64*8099}=\sqrt{64}*\sqrt{8099}=8\sqrt{8099}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-720)-8\sqrt{8099}}{2*8}=\frac{720-8\sqrt{8099}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-720)+8\sqrt{8099}}{2*8}=\frac{720+8\sqrt{8099}}{16} $

See similar equations:

| 5(4x+7)=-44+39 | | 7^(3x-2)=35 | | 8x+13=-12x+7 | | 6x+11=9x+20 | | 3+d/7=9 | | K=4-6x/3x-2 | | -4x+7+11x=23-6x+49 | | 4t=10-6t | | 1+4x=5-3x | | 4*x+15=7 | | 5x(2x+1)=4(3x-7) | | 30=(y+6)/7 | | 5x-12=98 | | 360=(x-46)+(x-35)+1.5x | | (x+8)²=x²+16x+64 | | 3s^2+54=0 | | -7n-14=-14-7n | | 12+x=4x-68 | | 4u^=108 | | 360=(x-46)+(x-35)+11/2x | | 2x+6(x-1)=31.5+2x | | 2x+6x-6=31.5+2x | | 6b+4=19 | | 3x+3=-1+2x | | 3(2x-2)=-13+5x | | 9+2(x-3)=7-2(x-6) | | (7x-6)=(x50) | | (x-6)=(x50) | | (r-1)/3=(r+5)/4=1/2 | | -3-3(v+7=-22-5v | | 6a^2+10a=136 | | 8x+-3=7+3x |

Equations solver categories