x+x*x+x/x+x*2*2+x-x=700

Simple and best practice solution for x+x*x+x/x+x*2*2+x-x=700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x*x+x/x+x*2*2+x-x=700 equation:



x+x*x+x/x+x*2*2+x-x=700
We move all terms to the left:
x+x*x+x/x+x*2*2+x-x-(700)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
x+x*x+x/x+x*2*2-700=0
Wy multiply elements
x^2+x+x/x+4x*2-700=0
Fractions to decimals
x^2+x+4x*2-700+1=0
We add all the numbers together, and all the variables
x^2+x+4x*2-699=0
Wy multiply elements
x^2+x+8x-699=0
We add all the numbers together, and all the variables
x^2+9x-699=0
a = 1; b = 9; c = -699;
Δ = b2-4ac
Δ = 92-4·1·(-699)
Δ = 2877
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{2877}}{2*1}=\frac{-9-\sqrt{2877}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{2877}}{2*1}=\frac{-9+\sqrt{2877}}{2} $

See similar equations:

| x+x*x+x/x+x*2*2+x-x=37500 | | 7=55/b-4 | | 1/69^x=343 | | 50=3y+7y | | 2x(-9+x)=0 | | 2(-2)-1y=1 | | 7f=23 | | 12.2+x-7.1=5.9 | | 2.6+x=0.4 | | y*0.79=128 | | 15x+4=56 | | 9x=4=8-2x | | 5t=4t+14 | | 5t=4t+ | | 5(2y+2)-2(3y+6)=6 | | 2(x+8)+2(3x+6)=4 | | 6(4z+4)=2(-2z-2) | | 4(3w=3)=7(w+6) | | 0.1=100x | | 9.2e=-12 | | 4(x1)=24 | | 8n/20=36/90 | | 4x+0.05x=20.25 | | 6-5x=3x+10 | | 3x-12=24+2x | | 9x+13=13x-19 | | 8x+270=6x+185 | | 12x-5+5x+48=180 | | 12x-5=5x+48 | | 8x-5=65-2x | | 20+x=25+2x | | (7x+3)=57 |

Equations solver categories